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Abstract. In this article we deal with the experimental investigation of pattern formation in a planar ac
gas-discharge system with a dielectric barrier. We report on the first observation of the transition from
bright to dark current filaments and vice versa via stripe-like patterns. The observed phenomena become
classified in the framework of Turing-structures and solitary objects and are compared to results obtained
by numerical simulations of a two-component reaction-diffusion-system.

PACS. 52.80.Hc Glow; corona – 89.75.Kd Patterns – 89.75.Fb Structures and organization in complex
systems

1 Introduction

Self-organised patterns in nonlinear systems have been of
increasing interest in recent years. Especially classical soli-
tons and their non-conservative relatives, the dissipative
solitons, turned out to be of particular interest for fun-
damental research as well as for application. Dissipative
solitons have been found in very different areas of research.
We only mention optical systems [1,2], semiconductor de-
vices [3–6], electrical networks [7], nerve pulse transmis-
sion lines [8,9], chemical systems [10], and gas-discharge
systems [11–13].

The present work concerns an ac-driven barrier dis-
charge system (DBD) with a large aspect ratio which is
known to produce a large amount of varying patterns,
both particle-like structures [14–20] and other spatial pat-
terns [21]. Usually, solitary filaments in such systems occur
as current channels perpendicular to the dielectric barri-
ers, defining a spot in the 2-dimensional discharge plane.
These well localised objects and the corresponding well
localised luminescence radiation density distribution we
refer to as bright dissipative solitons. As a novelty, in the
present experiments also dark solitons occur, consisting
of a currentless, dark spot in an otherwise bright, ho-
mogeneous discharge. To obtain the transition between
these two types of solitons only a single system parameter
has to be varied. The intermediate states consist of differ-
ent stripe-like patterns. Bifurcation scenarios like this are
known from reaction-diffusion (RD) models [22,23], but
to our knowledge experimental observations are rare [24].
A similar situation in a quasi one-dimensional electrical
network was observed in [25].
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In order to understand the above mentioned patterns
and their transition scenario in the framework of pattern
formation it is useful to clarify their relation to dissipative
solitons on the one hand and to Turing structures on the
other hand. As long as the pattern in question consists
of well defined localised spots we want to refer to these
objects as dissipative solitons. These dissipative solitons
have a particle-like character and often exhibit interesting
interaction phenomena. However, if there are many spots
arranged in a spatially ordered way, usually in a hexag-
onal or quadratic lattice, from a phenomenological point
of view they may be regarded as a Turing-like structure.
Under a Turing pattern in this context we want to under-
stand a static and spatially periodic pattern that emerges
from a stationary homogeneous state by a bifurcation in
which a well defined single wavelength becomes unstable.
Thereby we assume that before and after the bifurcation
the stationary state in a system with small extension is
stable and the destabilisation of the spatially extended
homogeneous state is due to diffusion.

To take the above considerations into account, the ex-
perimental results are discussed in the framework of a
two-component reaction-diffusion equation. We numeri-
cally demonstrate an instability scenario, leading to high-
amplitude patterns, which are similar to the experimental
observations.

2 Experimental set-up

The experimental set-up is sketched in Figure 1. Both elec-
trodes consist of glass plates coated with indium tin oxide
(ITO), which is electroconductive and transparent with
respect to the luminescence radiation being emitted from
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Fig. 1. Experimental set-up. Two glass plates of thickness
a are separated by a spacer defining a circular gas-discharge
space being filled with helium at pressure p and having the dis-
charge length d and the diameter D. The glass plates both are
coated with ITO, one of which is oriented to the gas space and
the other to the outside. In the latter case the corresponding
glass plate acts as a dielectric barrier. Through one of the glass
plates the gas-discharge can be observed using a video camera.
The system is driven by a positive rectangular voltage with a
frequency f , a duty-cycle of 50% and an amplitude Û .

the gas during discharge. The latter being captured by ap-
propriate cameras is to good approximation proportional
to the current density. Between the glass plates there is
a dielectric spacer defining a circular discharge area with
diameter D = 40 mm and thickness d = 0.5 mm being the
discharge length. One of the electrodes is oriented with
the ITO coated side to the gas gap and therefore acts as a
metallic electrode. At the other glass plate the ITO layer
points to the outer side and hence acts as an electrode with
a dielectric barrier with a thickness of a = 0.5–1.0 mm.
Through one of the glass plates and the corresponding
ITO layer the gas-discharge is observable by a video cam-
era. The working gas in the gas gap is helium at a pres-
sure of p = 200 hPa. The electric power supply provides
a positive rectangular voltage with an amplitude up to
Û = 700 V and a duty cycle of 50%. The frequency f is
varied from 0.1 kHz to 20 kHz.

3 Experimental observations

The first run of the experiment was made by increasing
the frequency. The experimental results are depicted in
Figure 2. When the system is driven in the range of lower
frequencies, a weak glow discharge with fluctuations in the
light emission is visible. Figure 2 shows such a situation
at f = 6.2 kHz. At higher frequencies the fluctuations
increase, and at approximately 7.4 kHz bright spots oc-
cur arbitrarily distributed over the discharge area, as it
is shown in Figure 2 for f = 8 kHz. Near the bifurcation
point it is possible that spots are generated and disap-
pear again. The three pictures in Figure 2 at f = 8 kHz
represent such a scenario. They are taken from consec-
utive video frames with a repetition time of 20 ms. In
the first frame the upper of three bright spots has just
been ignited. In the second frame it is fully developed
and in the third frame it has vanished again. As the fre-
quency is further increased more and more spots arise. At
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Fig. 2. Luminescence radiation density being emitted from
the DBD system as the driving frequency f is increased. The
three pictures at f = 8 kHz are consecutive video frames with a
repetition time of 20 ms. The parameters according to Figure 1
are a = 0.7 mm, d = 0.5 mm, D = 40 mm, p = 200 hPa He,
U = 550 V, exposure time: 1/250 s.

f = 9 kHz almost half of the discharge area is covered with
spots. From time to time some rearrangement of the pat-
tern occurs which becomes increasingly vivid with further
increase of the frequency. At f = 9.3 kHz the whole dis-
charge area is covered with bright spots. Due to the large
number of spots they are rather near to each other and
spots formally having radial symmetry become deformed
due to interaction. In Figure 2 at f = 10.9 kHz a dense
arrangement of deformed spots is shown. For f � 9.3 kHz
the pattern undergoes continuous rearrangement.

When the frequency is increased further, the spots be-
gin to fuse with their neighbours as it is shown in Figure 2
at f = 11.9 kHz. Hence for these objects it is no longer ev-
ident that they are spots on a dark background. In fact, it
seems to be more justified to refer to a bright background
with areas of lower light intensity. For further increase of
the frequency the pattern consists of a bright background
with dark, branched grooves, as it is shown in Figure 2
at f = 13.3 kHz. At this point it becomes evident that
the dark stripes always hit the boundary of the discharge
area at right angle. Eventually some grooves become very
short, and if they are as short as they are broad one would
prefer to refer to them as spots. When the frequency is
still increased further we occasionally observe dark spots
(Fig. 2 at f = 13.6 kHz) performing an irregular shiver-
ing and propagation. At f = 14.5 kHz the discharge plane
exhibits an almost homogeneous bright luminescence ra-
diation background and only a few dark spots are left.
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Fig. 3. Luminescence radiation density emitted from the DBD
system as the driving frequency f is decreased. The four pic-
tures at f = 11.7 kHz are consecutive video frames with a
repetition time of 20 ms. The parameters and exposure time
are as in Figure 2.
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Fig. 4. Amplitude difference Aexp of the pattern in dependence
of the driving frequency: (a) for increasing frequency, evaluated
from Figure 2; (b) for decreasing frequency, evaluated from
Figure 3.

Finally, at f = 14.7 kHz all dark spots have disappeared
and a homogeneous glow discharge covers the whole dis-
charge area. This state stays stable up to the driving fre-
quency of 20 kHz.

In a subsequent experiment the driving frequency has
been decreased. The emerging patterns are presented in
Figure 3. In the beginning, the discharge exhibits a nearly
homogeneous bright glow. At f = 11.7 kHz the first dark
spots arise. Their appearance is shown in Figure 3 in the
upper row in four subsequent frames. The leftmost image
belongs to the highest frequency. In contrast to the bright
spots in the first run, the dark spot arise close to each
other forming a connected island that grows with decreas-
ing driving frequency. As the driving frequency becomes
even smaller, the same patterns as in the first run occur
in the reverse order (Fig. 3, upper row). Finally, at about
f = 5.7 kHz, the last bright spot disappears.

In Figure 4 the amplitude difference Aexp of the pat-
tern in dependence of the driving frequency is depicted.
We define this amplitude difference Aexp as the difference
of luminescence intensities between the brightest and the
darkest area in the pattern. To reduce the influence of

noise, the local brightness in a camera frame is computed
as the average over a small area. The size of that area
is chosen to be much smaller than the lateral structures
in the pattern and large enough to reduce the noise suf-
ficiently. To avoid effects of the boundary only the inner
circle with a diameter of 32 mm of the discharge area is
considered.

In Figure 4a below approximately f = 8 kHz the am-
plitude is determined only by the noise in the slightly glow-
ing discharge. At approximately f = 8 kHz the first bright
filaments occur and the amplitude jumps to a higher value.
Within the jump some frames with intermediate ampli-
tude occur. This is due to switching on and off of fila-
ments during the exposure time. With increasing driving
frequency the pattern varies from bright spots over stripes
to dark spots and, the pattern amplitude develops contin-
uously. At approximately f = 14.5 kHz, when the last
dark spot disappears, the amplitude falls back to the low
level of a homogeneous discharge.

In Figure 4b the amplitude difference Aexp correspond-
ing to Figure 3 is to be seen. The onset of the pattern at
f = 11.7 kHz occurs abruptly. In the course of further in-
crease of f the experiment the amplitude difference Aexp

develops continuously. At f = 5.7 kHz the pattern has
disappeared and Aexp falls back to the noise level. There
is a single frame with an intermediate amplitude of 23 a.u.
corresponding to a switching filament.

As inferred from Figure 4 bifurcations from the homo-
geneous state to the patterned state are subcritical, and
one might expect a hysteresis in the bifurcation point de-
pending on the direction of the change of f . Although the
overall phenomenon is reproducible, the precise positions
of the discontinuities vary from run to run over a wide
range, i.e. from 4 to 8 kHz and from 9 to more than 20 kHz
for the lower and upper transitions respectively. Therefore
so far it is impossible to investigate the hysteresis of the
reported bifurcations in detail.

4 Comparison with results
of a reaction-diffusion system

There are two classical approaches to describe the
plasma in the gas discharge, namely particle based mod-
els (e.g. PIC) [26] and fluid based modes (i.e. drift-
diffusion [27]) and many variations and combinations of
them. The first approach is very basic, and valid for a
wide range of plasma parameters, but generally covers a
time span of less than 1 µs. For the latter one this range
goes up to several tens of micro-seconds. The dynamics
in our system take place on a time scale of 0.1–1 s, so
numerical simulations for both cases are not practicable,
at least with presently available computers. Since on the
other hand reliable analytical solutions of the transport
equations seem to be far from reachable we conclude that
a straight forward interpretation of the experiment seems
to be inaccessible on the basis of present theoretical knowl-
edge of gas discharge.

To be still able to classify the observed patterns and
understand the bifurcations in between, we will follow a
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synergetic approach and use a simple model with qual-
itatively similar solution behaviour, namely a reaction-
diffusion (RD) system. The most obvious hint that this
approach is promising is given by the similarity of the
patterns and instability scenarios seen in the experiment
and those observed in RD systems [22–24,28,29]. This as-
sumption is further supported by the fact that for a DC-
system in a similar parameter range and similar large as-
pect ratio the lateral structuring is proved to be described
by a lateral RD model [30–32]. For the DBD system we
investigate in this work, the association of RD model
quantities with physical quantities is topic of actual re-
search. First hints for the link between the viewpoints of
gas discharge physics and RD concepts are given in the
discussion of this article.

RD systems usually exhibit very general behaviour,
so that even models without a specific connection to the
actual experimental system can describe emerging pat-
terns qualitatively very well and explain the types of ob-
served bifurcations. In this sense, similar patterns have
been studied in different chemical [23,28], physical [29]
and biological [22,24] systems. Also gas-discharge sys-
tems have been successfully described qualitatively with
reaction-diffusion models [33–35]. The aim of a RD model
describing a physical system is not to give the best possible
quantitative prediction but to classify the observed pat-
terns and bifurcations. Keeping that in mind, we choose a
simple two-component RD system with only one nonlin-
earity:

∂tu = Du∆u + λu − u3 − v + κ1 − κ2〈u〉,
τ∂tv = Dv∆v + u − v, (1)

where u = u(r, t) and v = v(r, t), r ∈ Ω ⊂ R
2. The

parameters Du, Dv, τ, λ and κ2 are positive, whereas the
sign of κ1 is arbitrary. The term 〈u〉 denotes the spatial
average, describing a global feedback effect, namely

〈u〉 =
1
|Ω|

∫
Ω

u(r, t)dr.

This system can be considered as an extension of the
FitzHugh-Nagumo equation for nerve pulse transmis-
sion [8,9], which is widely used to model some biologi-
cal [36], chemical [37] and physical systems [13,38]. For
appropriate parameters u in system (1) can be consid-
ered as an activator stimulating the temporal evolution
of the two variables u and v while v acts as an inhibitor.
The only nonlinearity comes into play through the cubic
term in the first equation. The system parameters were
chosen in such a way, that equations (1) admit only one
homogeneous solution, which is stable in a certain param-
eter region. Notice that this solution can become unstable
with respect to finite wave number perturbation (Turing
instability) if one changes some control parameter.

A distinct feature of the system (1) is the presence of
the integral term 〈u〉. In this case, the well-known con-
ditions of Turing instability (see, e.g., [3,34,39]) are not
affected, but the homogeneous solution is shifted. If one
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Fig. 5. Typical stationary solutions of system (1) if the con-
trol parameter κ1 is decreased. Parameters: Du = 2.8 × 10−4,
Dv = 5.0 × 10−3, λ = 0.9, κ2 = 4.0, τ = 1.0, κ1 ∈ [−3.0, 3.0].
The critical values are κ1c = ±1.709. Boundary conditions are
Neumann.

chooses κ1 as a control parameter, the critical value for
the onset of the Turing instability is

κ1c = ±
√

λ − σ

3

(
1 + κ2 − 2λ + σ

3

)
, (2)

where σ = 2
√

Du/Dv − Du/Dv.
We study this model by solving the system (1) numer-

ically with zero flux boundary conditions on a rectangular
domain Ω = [0, 5] × [0, 5]. In the beginning, the value of
κ1 is set to 1.72 and the initial condition is the random
perturbed uniform solution. When the simulation reaches
a stationary state, a further simulation is started with de-
creased κ1 and with the previous stationary state as the
initial condition. In this way, we calculate the emerging
patterns for all κ1 ∈ [−κ1c, κ1c]. In Figure 5 an example
from this series of calculations is to be seen.

Below the threshold κ1c = 1.709 the uniform state be-
comes unstable in favour of a finite wave number perturba-
tion. The emerging spot-like pattern is shown in Figure 5
for κ1 = 1.6. The spots consist of low u areas (dark) on a
high u (bright) background. Notice, that as the system is
in a subcritical regime (forcing a high-amplitude pattern)
and because of the presence of the integral term (limit-
ing the overall activator density), the pattern is not peri-
odic in space, but only some wave trains emerge. In the
course of further decrease of κ1 the pattern significantly
changes its shape: spot-like pattern (see Fig. 5, κ1 = 0.5),
labyrinths (κ1 = −0.5), and labyrinth patterns with bright
spots (κ1 = −1.5). Finally, one observes spot-like patterns
with high u (bright) spots on a low u (dark) background
(κ1 = −2.0, κ1 = −2.5). In contrast to the previously
seen, Turing triggered patterns, these spots do not form
coherent wave trains. The number of spots decreases for
decreasing values of κ1. When κ1 falls below −2.72, the
pattern vanishes and the homogeneous solution emerges
(see Fig. 5, κ1 = −3.0). This second critical value of κ1,
being different from −κ1c, we refer to as −κ1h.

A similar numerical simulation was made with increas-
ing κ1, starting from κ1 = −2.72. As equations (1) are
symmetric with respect to a change of sign, the emerging
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of the activator am-
plitude Ath on the
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patterns are qualitatively the same as in Figure 5 with ex-
changed bright (high u) and dark (low u) areas. The onset
of the Turing instability then occurs at −κ1c = −1.709,
and at κ1h = 2.72 the pattern vanishes.

To investigate the type of the observed bifurcations, we
calculate from the results gained numerically the pattern
amplitude difference Ath of the activator u as a function of
κ1. Ath is defined as the difference between the largest and
the smallest value of u within Ω. Due to the used numer-
ical accuracy a noise rejection for u is not necessary. The
result is shown in Figure 6 for decreasing (solid triangles)
and increasing (open triangles) κ1.

On this background the behaviour of the system can
be understood as follows: for |κ1| > κ1h the system (1) is
in a homogeneous stable state, corresponding to the zero
amplitude Ath. For |κ1| < κ1c the system is in a pat-
terned state. The amplitudes Ath for all parameter values
in this region are almost the same. The bifurcations tak-
ing place if |κ1| crosses κ1c or κ1h are subcritical. For
|κ1| ∈ [κ1c, κ1h] there are hysteresis regions, i.e. the ac-
tual value of the amplitude Ath is determined by the ini-
tial condition of the calculation, i.e. the direction of κ1

variation. The patterns in these regions consist of solitary
spots being not connected to each other (see Fig. 5).

5 Discussion

In the experimental part of this work we presented a DBD
system exhibiting both bright current spots in a low cur-
rent, dark surrounding and low current, dark spots within
an otherwise homogeneously high current surrounding.
The transition between these patterns is mediated by
stripe-like patterns. We now want to classify these phe-
nomena in the framework of dissipative solitons and Tur-
ing structures.

To begin with, spots behaving like dissipative soli-
tons shall be identified. In both measurements, Figure 2
(increasing driving frequency) and Figure 3 (decreasing
driving frequency), they appear at the end of the record-
ing shortly before the pattern vanishes in favour of a
homogeneous system state. For increasing driving fre-
quency (Fig. 2) examples can be found in the images
at f = 13.6 kHz and f = 14.5 kHz. For decreasing
driving frequency (Fig. 3) they are exemplarily shown at
f = 7.7 kHz. They can be identified as dissipative solitons

by means of their arbitrary distances (i.e. their lack of long
distance order) and their independent movement.

There are also a couple of spots in the beginning of
both recordings, when the homogeneous state becomes
unstable in favour of a structured discharge. For decreas-
ing driving frequency (Fig. 3, f = 11.7 kHz) these spots
appear as a domain of agglomeration with distinct short
range order. As the driving frequency decreases, the do-
main of spots grows but spots existing independently do
not appear. In combination with the amplitude behaviour
(Fig. 4b) indicating a subcritical bifurcation, this pattern
can safely be identified as a subcritical Turing bifurca-
tion limited by a globally acting inhibition. For increas-
ing driving frequency (Fig. 2) the situation is more com-
plicated. For low frequencies (f = 8 kHz) single bright
spots with arbitrary distances appear. But in contrast to
the dark spots at the end of this recording and also in
contrast to the bright spots at the end of the recording
with decreasing driving frequency (Fig. 3, f = 7.7 kHz),
these spots do not move at all. Moreover, they appear
at rather low frequencies (at f = 8 kHz), long before
the discharge area becomes covered with further spots
(at f = 9 kHz). This leads us to the conclusion, that
these early bright spots are induced by inhomogeneities
or defects on the dielectric surfaces and are not truly
self-organised. The following occupation of the discharge
area with further bright spots (Fig. 2, f = 9 kHz) as
the driving frequency increases is very similar to the ap-
pearance of dark spots with decreasing driving frequency
(Fig. 3, f = 11.7 kHz – f = 9.3 kHz). The filaments oc-
cur in an agglomerated manner with a rather well defined
short range order. Again, with respect to the behaviour
of the amplitude Aexp (Fig. 4a) indicating a subcritical
bifurcation, this bifurcation can be classified as a Turing
bifurcation limited by a globally acting inhibition. Also in
the present experimental situation, the physical nature of
the global inhibition might be some serial resistance, i.e.
the internal resistance of the driving.

Finally, we want to compare the experimental findings
to the results obtained from the RD-model. As the model
is not specific for our gas-discharge system, we cannot
draw any quantitative comparisons. However, a qualita-
tive comparison is possible.

First, consider the development of the amplitude Aexp

of the patterns as they are shown in Figure 4 for the ex-
periment and as Ath in Figure 6 for the RD-model. In
both cases, all bifurcations — from a homogeneous state
to a structured one and vice versa — are subcritical. In
the course of the high-amplitude patterns the amplitude
changes continuously.

For the pattern amplitude behaviour Ath in the model
(Fig. 6) the region of hysteresis of the subcritical bifur-
cations can be identified in the intervals [κ1c, κ0] and
[−κ0,−κ1c] respectively. In the experiment, the range and
the position of the high-amplitude patterns varies over a
wide area between single runs making it impossible to
compare the bifurcation points obtained from different
runs. Nevertheless, as argued above, a region of hysteresis
cannot be determined though is very probable.
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Furthermore the comparison of the observed patterns
in the experiment (Figs. 2 and 3) and the RD-model
(Fig. 5) leads to remarkable agreement. The appearance
of spots, bright ones as well as dark ones, occurs via a
subcritical Turing bifurcation limited by integral inhibi-
tion. The intermediate patterns in both cases consist of
branched stripe-like patterns with a spatial scale inher-
ited from the spots.

We found the patterns in the luminescence radiation
density in the experiment and in u in the RD-model to
be similar, therefore the model quantity u is supposed to
be related to the current density j (which is known to
be proportional to the luminescence density [20,40]) in
the experiment. Also the surface charges an the dielectric
barriers contribute to the activatory effect of u at the be-
ginning of each breakdown. The inhibitory effect of the
model variable v is related to volume and surface charges
within each breakdown. A detailed discussion of the men-
tioned physical quantities is given in [41].

We want to thank Dr. Sh. Amiranashvili for fruitful discus-
sions and for reading the manuscript. We thank the Deutsche
Forschungsgemeinschaft (DFG) for financial support.
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